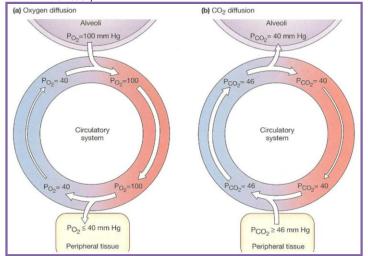

Chapter 18 Gas Exchange and Transport



DIFFUSION and SOLBUILITY of GASES

I.

- a. FOUR factors that influence diffusion in the lungs
 - Surface Area: Rate of diffusion is directly proportional to available surface area (increased surface area = increased diffusion)

- ii. Concentration Gradient: Rate of diffusion is directly proportional to concentration gradient (increase gradient = more diffusion of substances)
- iii. Membrane Thickness: Indirectly proportional to diffusion rate (Increase thickness = decrease diffusion)
- Diffusion Distance: Directly proportional (short distance = quick diffusion/long distance = slow diffusion)

Gas Exchange in Lungs and Tissue b.

v.

- i. Normal ARTERIAL Alveolar PO2 =100mmHg
- ii. Normal VENOUS Systemic PO₂ = 40mmHg
- iii. Normal ARTERIAL Alveolar PCO₂ = 40mmHg
- iv. Normal VENOUS System PCO₂ = 46mmHg
 - O_2 100 \rightarrow 40 moving down its concentration gradient from alveolar to capillaries 1.
 - 2. CO₂ is higher in tissues than in systemic capillary blood because carbon dioxide is
 - produced during metabolism
 - Hypoxia: State of too little oxygen 3.
 - 4. Hypercapnia: Elevated concentrations of carbon dioxide
- A decrease in Alveolar PO2 Decreases Oxygen Uptake at the Lungs c.
- i. First requirement for adequate oxygen delivery to the tissues is to have adequate oxygen intake from the atmosphere (levels of elevation)
 - ii. Main factor that affects oxygen content of inspired air is altitude
 - iii. Normal Atmospheric Level 760mmHg (sea level) 160 mmHg O₂
 - iv. High altitude Level (Denver) 628mmHg = 132 mmHg O_2
 - If Alveolar PO2 is low but the composition of inspired air is normal the problem lies with alveolar ventilation
 - 1. Low alveolar ventilation - hypoventilation (lower than normal volumes of fresh air entering the alveoli)
 - a. Emphysema
 - b. Fibrotic lung disease
 - c. Pulmonary edema
 - d. Asthma

Changes in the Alveolar Membrane Alter Gas Exchange

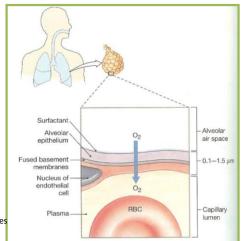
- Transfer of oxygen from alveoli to blood requires diffusion across the barrier created by type I alveolar cells a.
- Gas exchange in the lungs is rapid, blood flow through pulmonary capillaries is slow, and diffusion reaches b.
- equilibrium in less then 1 second

П.

- Pathological changes that effect gas exchange c.
 - i. Decrease in the amount of alveolar surface area available for gas exchange (EMPHYSEMA)
 - ii. Increase in the thickness of the alveolar membrane (FIBROTIC LUNG DISEASE)
 - iii. Increase in the diffusion distance between alveoli and blood (PULMONARY EMEDA)

Comment [HAW3]: Elastic Disorder; Lose of elasticity; Trouble during exhalation

Comment [HAW1]: Starts high → gets low

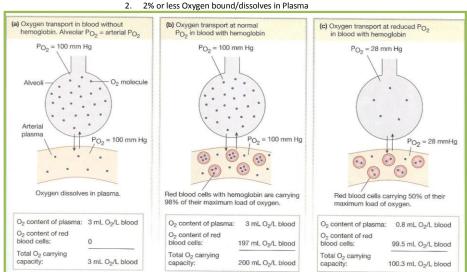

because cells have low concentration of oxygen

Comment [HAW2]: Starts low → gets high

because cells release CO₂ during ATP/energy

production

Comment [HAW4]: Compliance Disorder; Lose of stretch; Trouble during Inhalation



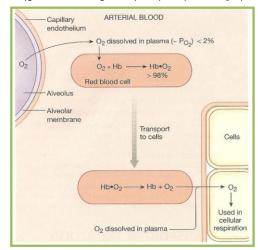
3

GAS TRANSPORTED IN THE BLOOD

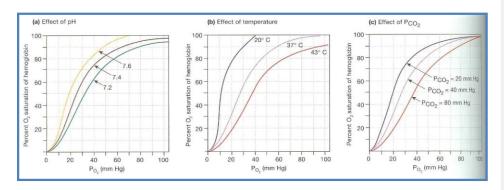
I.

- Hemoglobin transports most Oxygen to the Tissues a. Oxygen is transported in two ways
 - i. Dissolved in plasma
 - ii. Bound to Hemoglobin (Hb)
 - Pulmonary Capillaries and places with high concentration of O₂; Hemoglobin has a high affinity for oxygen b.
 - At cells where oxygen is being used and plasma PO_2 levels are low; hemoglobin has a low affinity for oxygen c. 1. 98% of Oxygen in given volume of blood is bound to hemoglobin

2% or less Oxygen bound/dissolves in Plasma

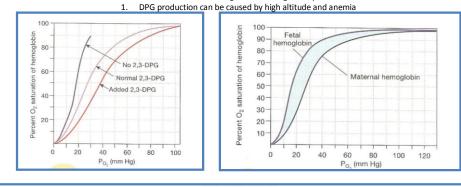

d. Hemoglobin's binding ability to oxygen depends on two factors i. PO_2 in the plasma surrounding the RBC

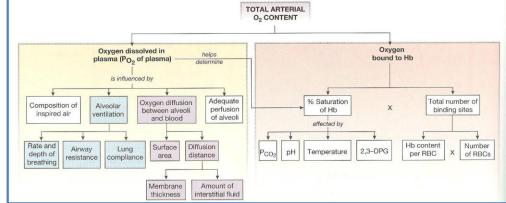
- ii. Number of potential binding sites available in the red blood cells
 - 1. PO2 is the primary factor determining how many of the available hemoglobin binding sites are occupied by oxygen


- 2. Total number of oxygen-binding sites depends on the number of hemoglobin molecules in the RBC.
- II. One Hemoglobin Molecule Binds Up to Four Oxygen Molecules
 - a. Hemoglobin is a complex protein whose quaternary structure has four globular protein chains
 - b. Each chain is wrapped around a iron-containing heme group
 - c. Four heme groups in hemoglobin are identical
 - d. The iron-oxygen interaction is a weak bond that can be easily broken without altering either the hemoglobin or oxygen
 - Oxygen-Hemoglobin Binding Obeys the law of Mass Action
 - a. Hemoglobin bound to oxygen is known as oxyhemoglobin (HbO₂)
 - b. If oxygen concentration ↑ the oxygen-hemoglobin binding reactions shifts to the right and more oxygen binds to hemoglobin
 - c. If oxygen concentration ↓ the oxygen-hemoglobin binding reaction shifts to the left and less oxygen binds to hemoglobin
- IV. PO₂ Determines Oxygen-Hemoglobin Binding

ш.

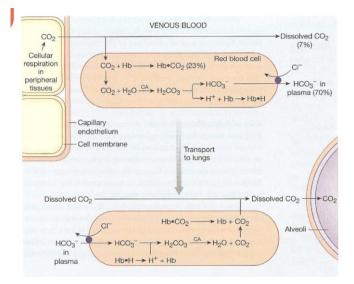
a. Amount of oxygen bound to hemoglobin depends primary on the PO₂ of plasma surrounding the RBC




- b. In pulmonary capillaries O2 dissolved in the plasma diffuses into RBC where it binds to hemoglobin
- c. This removes dissolved O_2 from the plasma causing more oxygen to diffuse in from the alveoli
- d. The PO₂ of tissue cells determines how much oxygen unloads from hemoglobin
 - i. As cells increase their metabolic activity, their PO_2 decrease, and hemoglobin releases more oxygen to them
- V. TEMP/pH/Metabolites Affect Oxygen-Hemoglobin Binding
 - a. Physiological changes in plasma pH, PCO₂, and temperature all alter oxygen-binding affinity of hemoglobin
 - b. Temperature= Decrease affinity of hemoglobin for oxygen/shift curve to the right
 - c. $\uparrow PCO_2$ = Decrease affinity of hemoglobin for oxygen/shift curve to the right
 - \downarrow pH = Decrease affinity of hemoglobin for oxygen/shift curve to the right
 - d. ↓ pH = Decr i. pH
- 1. Anaerobic metabolism in exercising muscle fibers produces lactic acid which releases H⁺ into E.C.F. and cytoplasm
- 2. More oxygen is released at the tissues as the blood becomes more acidic
- 3. Borh Effect

e. DPG

- i. 2,3 Diphosphoglycerate
- ii. Compound made from an intermediate of glycolysis pathway
- iii. Triggered by Chronic Hypoxia, increases production of DPG in RBC
- iv. Increase in DPG levels lower hemoglobin's binding affinity



CARBON DIOXIDE

Ι.

Carbon Dioxide is Transported in Three Ways

- a. Gas transport in blood includes CO_2 removal
- b. CO₂ is byproduct of cellular respiration
- c. Cells product more CO_2 then plasma can dissolve (7% CO_2 dissolved by venous blood)
- d. 93% of CO_2 is dissolved in RBC where
 - i. 70% of CO_2 in RBC is converted to *Bicarbonate lons*
 - ii. 23% of CO_2 in RBC gets bound to hemoglobin (Hb-CO₂)

- e. Removing CO_2 from the blood is important because elevated PCO_2 (hypercapnia) cause
 - i. a decrease in pH, acidosis
 - ii. Denature proteins
 - iii. Depress N.S. functions
 - iv. Confusion
 - v. Coma
 - vi. Death
- CO₂ and Bicarbonate lons

п.

a. 70% of CO₂ that enters RBC is converted into Bicarbonate lons (HCO₃⁻) that travels to the lungs dissolved in plasma

$CO_2 + H_2O \leftrightarrow H_2CO_3 H^+ + HCO_3^-$	Comment [HAW6]: Carbonic Acid; Product of
$\underline{CO_2 + H_2O \leftrightarrow H^+ + HCO_3}$	carbonic anhydrase (CA) enzyme that converts
	carbon dioxide and water into carbonic acid;

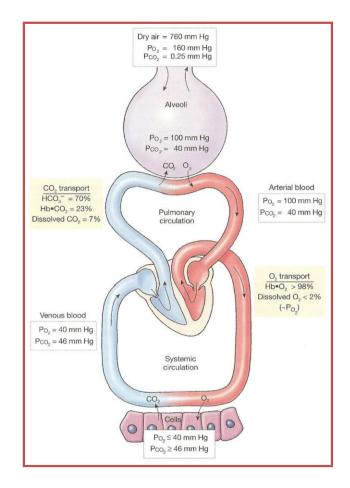
- b. Conversion takes place because
 - i. Provides an additional means by which CO₂ can be transported from cells to the lungs
 - ii. HCO₃ can act as a buffer for metabolic acids helping to stabilize body pH
- c. To keep conversion of CO_2 to hydrogen and bicarbonate it must be removed from cytoplasm of RBC

III. Hemoglobin and H^+

a. If PCO_2 is elevated hemoglobin cannot bind with H^+ produced from the reaction of CO_2 and H_2O

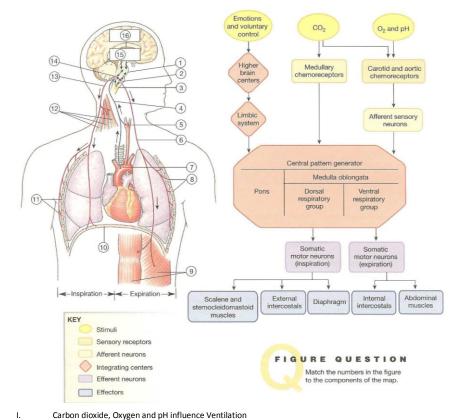
Carbonic Acid then dissociates into hydrogen and

bicarbonate


Comment [HAW5]: CO₂ is a potentially toxic

waste product that must be removed by the lungs

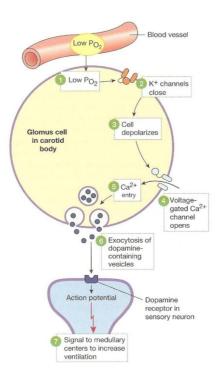
b. Excess H⁺ accumulates in the plasma causing *respiratory acidosis*


- Hemoglobin and CO₂
 - a. 23% of CO₂ in venous blood binds directly to hemoglobin
 - b. When O_2 leaves its binding sites from hemoglobin CO_2 binds to free binding sites to form carbaminohemoglobin (HbCO₂)
- **Comment [HAW7]:** Both CO₂ and H⁺ presence decreases hemoglobin's binding affinity for oxygen

7

IV.

REGULATION OF VENTILATION



Carbon dioxide, Oxygen and pH influence Ventilation

- a. Central and peripheral chemoreceptors modify rhythmicity of the central pattern generator
- b. CO2 is the primary stimulus for changes in ventilation (oxygen and plasma pH play lesser roles)
- c. Chemoreceptors (for O₂ and CO₂) are strategically associated with arterial circulation
 - i. $\downarrow O_2$ in arterial blood = Rate and depth of breathing decreases
 - ii. If CO_2 production by the cells exceeds rate of CO_2 removal by the lungs, a an \uparrow CO_2 in arterial blood = ventilation is intensified (hypernea/tachypnea)

PERIPHERAL CHEMORECEPTORS

- a) Located in the carotid and aortic arteries
- b) Sense changes in CO₂, O₂, and pH
- c) Close to baroreceptors
- Trigger an INCREASE VENTILATION d)
- e) PO₂ must fall below 60mmHg or a 40% drop must occur

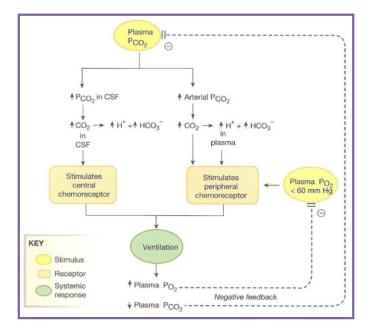
CENTRAL CHEMORECEPTORS

- Most important chemical controller of ventilation is $\ensuremath{\text{CO}_{2}}\xspace$ mediated through central a) chemoreceptors in the Medulla
- b) When arterial CO₂ increases, it crosses the BBB rapidly and activates the central chemoreceptors
- Receptors signal an INCREASE VENTILATION c)
 - a. Increase Rate and Depth
 - b. Increase Alveolar ventilation

d) If PCO_2 remains elevated over a period of time the ventilation falls back to normal/adaption takes place; HCO_3^- begins to enter CSF and buffer/denaturalize acidic environment

- e) Respond to decreased Arterial
 - CO₂ as well as increased
 - a. During decreased

Cerebral capillary Blood-brain **↑**Pco H⁺ barrie $\overset{\Psi}{\text{CO}_2} + \text{H}_2\text{O} \underset{\text{CA}}{\rightleftharpoons} \text{H}_2\text{CO}_3 \underset{\checkmark}{\rightleftharpoons} \text{H}^+ + \text{HCO}_3^-$ Cerebrospinal fluid + Central chemoreceptor Medulla and allow CO₂ to accumulate KEY Respiratory Stimulus control Receptor Afferent pathway Integrating center


†Ventilation

Systemic response

Comment [HAW8]: Blood Brain Barrier

Comment [HAW9]: Although we say it measures CO2 it really MEASURES pH changes in the CSF

-Increase in H^{*} from $\underline{CO_2 + H_2O \leftrightarrow H^* + HCO_3^-}$ causes acidotic conditions, which activated the central chemoreceptors

- f) Chronic Lung Disease a. Emphysema i. Chronic Hypercapnia
 - ii. Chronic Hypoxia
 - iii. Their central chemoreceptors adapt to elevated levels of PCO2 and low O2
 - iv. Their peripheral chemoreceptors though remain intact, and sense low O_2 levels and stimulate ventilation